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The paper generalizes an earlier problem of Grundy ( I  972) by considering the expansion 
of a (uniform) initially contained gas into a low-density non-uniform ambient atmo- 
sphere of density p o r k ,  where k > 0 and r is a non-dimensional radial co-ordinate. 
Regarding the flow as a perturbation of the perfect-vacuum expansion, we set up a 
boundary-value problem with boundary conditions on the contact front separating 
the two gases and on the strong shock which propagates into the ambient atmosphere. 
A large time solution to the problem can be developed by constructing an outer 
expansion valid near the contact front and an inner expansion valid near the shock. 
The matching process encounters two kinds of difficulty both of which imply that the 
large time solution is indeterminate from an asymptotic analysis alone. 

The asymptotic analysis does show however that the shock velocity tends to a con- 
stant only for restricted values of k. For the remaining values the shock has a k-depen- 
dent power-law behaviour. The paper examines the location of the transition and 
determines the asymptotic power-law dependence of the shock velocity. 

1. Introduction 
In  a previous paper (Grundy 1972, hereafter referred to as I), the author deals with 

the problem of how the unsteady expansion of an initially uniform mass of gas into 
a uniform ambient atmosphere degenerates into a perfect-vacuum expansion. In  
addition the paper gives an indication of how the large time solution of the resulting 
boundary-value problem could be attacked. In the present paper we extend these ideas 
to cover the expansion of an initially uniform gas into a non-uniform ambient atmo- 
sphere. This generalization is of importance in certain astrophysical problems (e.g. 
Parker 1963) concerning the propagation of flare-driven shocks in an ambient stellar 
wind. 

The basic set-up for the problem has been indicated in I; the difference now is that 
we consider the ambient gas density to have the form p o r k ,  k > 0,  where r is a non- 
dimensional radial co-ordinate and po is the initial ambient density at  r = 1.  The prob- 
lem can be reduced to solving the equations of gasdynamics subject to a condition 
on velocity along the contact front between the source gas and the ambient gas and the 
Rankine-Hugoniot conditions at the strong shock. By suitably scaling the variables, 
three parameters appear in the problem: k, (T (the geometry index) and yo. 

The problem is initially attacked using the particle-path co-ordinate as one of the 
independent variables. As indicated in I ,  a uniformly valid large time solution, in 
which for mathematical and physical reasons we are primarily interested, consists 
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of two expansions: an outer expansion valid near the contact front must be matched 
with an inner expansion which takes into account the boundary conditions a t  the 
shock. For certainvalues of k, those for which the asymptotic shockvelocity is constant, 
matching difficulties are encountered which occur in other branches of gasdynamics, 
namely hypersonic small disturbance theory (Freeman 1965; Stewartson & Thompson 
1968, 1970; Ellinwood 1967). We show in an appendix that the large time solution 
cannot be found by asymptotic analysis alone and that eigenfunctions appear in the 
higher-order terms which can be fully determined only by conditions at  finite times. 

What we can determine, however, is the asymptotic shock velocity, numerically as 
a function of u, yo and k. The important question of the existence of such an asymptotic 
solution is then examined. To do this we see that the zeroth-order term in the inner 
expansion is, in physical co-ordinates, the well-known similarity or progressing-wave 
solution (e.g. Courant & Friedrichs 1948; Sedov 1959). Certain hitherto undiscovered 
properties of these solutions are relevant in this context, and for this reason we 
examine the phase plane of these solutions. From such an examination it is apparent 
that, for the contact front and the shock to have the same asymptotic path, k has to 
be less than some critical value k,(a, yo). For values of k greater than this the only 
possibility is a power-law behaviour of the shock with the index a function of k, u and 
yo. The other parameter which fixes the shock path is apparently not determinate by 
the asymptotic analysis. In  this case we examine the outer solution in some detail and 
we find that to first order it has the structure of the ‘inertia-dominated’ vacuum 
solution (Grundy 1969a, 6 ) .  The basic feature is that it  is impossible to close the set of 
equations which determines the asymptotic expansion and consequently it possesses an 
inherent indeterminacy. 

After setting up the boundary-value problem, we divide the paper into two main 
parts: (i) the case k < k, ,where the ideas are in esscnce the same as I, and (ii) the case 
k > k,. The main aim in (i) is to show the non-existence of solutions for k > kc, to 
calculate k, as a function of u and yo and to find the asymptotic shock speed as a func- 
tion of u, k and yo. In  (ii) we treat the matching in a little more detail but our main 
concern is to determine the parameters which fix the asymptotic shock path. 

2. Equations and boundary conditions 

governing the problem can be written as 
Adopting the same notation and non-dimensionalization as in I, the equations 

au au l a p  
-+u-+-- = 0, 
at ar par 

together with the contact-front boundary condition 

(2 . la)  

(2.1b) 

(2.1 c) 

on r = -  2t + l .  
2 u=- 

Y*-1 Y.4-1 
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Here y4 is the specific heat of the source gas. In  the present case the ambient density 

is of the form p = r-k, k > 0, 

and we then have in the vacuum limit the strong shock relations 

For further details of the limiting procedure, the reader is referred to I and McLaughlin 
(1975). The problem is to solve (2.1) and find V subject to (2.2), (2.3) and the initial 
conditions u = 0, p = rk and p = 0 for r > 1.  

The aim is to develop a large time solution to the problem. To facilitate this it is, 
at first, easier to introduce the particle-path function $ defined, from the continuity 

a$/ar = pla, a$lat = -purr. (2.4u, b )  equation, by 

The equation of the shock in r ,  $ space is obtained by integrating ( 2 . 4 ~ )  along the 
front of the shock, where p = rk, and invoking mass continuity through the shock. 
This procedure gives 

({(u-k+l)$+l}""-k+'), u+l * k,\ 
r =  (2 .5)  

\e+, u+l = k,j 

as the required equation. In  the first case we simplify by putting 

(u- lc+l)$+I= q5 
and a further change of variables is made by replacing 

The equations and boundary conditions then become, for u + 1 =+ k ,  

P/PYO = dq5) 
subject to the contact-front condition 

and the shock conditions 

where V = V(r).  

u = l  on $ = l  

p = r-k, p = r-kV2, u = V on r = $llb-k+l), 

For u t  1 = k we have 

P I P  = f (11.) 
subject to u = 1 on $ = 0 and the shock conditions (2.3) on r = e+. 

( 2 . 7 ~ )  

( 2 . 7 b )  

( 2 . 7 ~ )  

( 2 . 1 0 ~ )  

(2.10 b )  

(2 .104 
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The functions g ( $ )  and f(@) are found by evaluating p/pYo at the rear of the shock, i.e. 

g( $) = [ V (  $ll(+k+1))]2 

3. The asymptotic solution 
3.1.  Inner and outer expansions for large times 

The aim is to find asymptotic solutions of (2 .7 )  and (2 .10)  for large r .  The first step in 
such a procedure is to make an assumption about the shock velocity. It seems reason- 
able initially to take 

V ( r )  = a, 1 + 2 b n 4 .  as r - f co ,  Rep, < 0, 

for then the shock would approach constant velocity for large times as does the contact 
front. Assumption (3 .1 )  is fundamental and if the asymptotic theory which results is 
not consistent then we must re-examine it. 

(3 .1 )  1 ( n = l  

W 

In (2 .7 )  we put (replacing yo by y )  

p = r-khR, p = r-kn, ( 3 - 2 )  
which gives 

( 3 . 3 a )  
a y + i a u  
ar Y - l W  
- (Ruru-kh) + R'++(@--k/y)( v - k + 1 )  - - = 0, 

and 

For reasons which will become apparent, k,  v parameter space is divided into four 
different regimes, which we consider in turn. 

Case 1 : 0 < k / ( v  + 1 )  < 1 .  We construct asymptotic expansions of R, u and II for 
r - f c o  with q5 = O(1); these are termed the outer expansions, with u satisfying the 
boundary condition (2 .8 ) .  The structure of the equations indicates that the only 
possible form for the outer expansion up to and including terms O(r-('+l-k/y)) is 

u = 1 + u2( $)/r"+l-k'y + . . . , 
II = n,($)+II , ($)h(r )+n2($) / ru+1-k'~+ ..., (3.4) 
R = R,($) + R,(#) h(r) + Rz(q5)/ru+1-k/r + . . . , 

where the terms involving h(r)  are generic terms of a sequence of functions such that 
h(r)  -+ 0 as r -+ 00. It turns out that it is necessary to include only one such function for 
first-order matching. In (3.4) 

u2 = ( k - y a ) ( y -  
y ( a - k + 1 ) ( y + 1 )  

satisfying ug = 0 on $ = 1 ,  

( 3 . 5 a )  

no = a,, n, = a,, rI, = a2-- kY U2 , (3 .5b )  
f ly -k  

(3 .5c)  
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where the a's are constants. Clearly, in order to find U,, FI, and R, explicitly, we should 
need to know the shock velocity V ( r )  for all r ;  thus the outer expansion is in this sense 
indeterminate. However, by making the assumption (3.1) we may fmd the behaviour 
of (3.5) as d-too: 

(3.6a) 

2b1 #~+l-kly+83/~+l-k 
UZ(9) = + I * . . . ] ,  (3.6b) 

with a corresponding expression for II,. Here I* is the finite part of the integral for u,. 
For values of Pl given by Bl = - n(a + 1 - kly) ,  n = 1,2,  . . ., logarithms are introduced 
into the expansions for u2 and II,. 

Now the shock is given by 9 = rff+l-k, and it is clear that the outer expansions (3.4) 
cannot satisfy the boundary conditions there. In  fact an examination of (3.4) with 
(3.6) reveals that the outer expansion is not uniformly valid when # = O(V'+~-~).  In  
order to look at  this inner region we choose an inner variable 

so that 91 = 1 on the shock. 
(3.7) # - &.k-o-l 

1 -  

Rewriting (2.7) in terms of #1 and putting p = r k P  and p = rkS, we have 

a a(su) + - ( ~ - k + l ) S ~ -  y + i  au = 0, (3.8a) 

ar a 9 1  7-1 8 4 1  
r - (Su) + (a  - k) Xu - (a - k + 1) 9 - 

au 
ar 

Sur - - (a  - k + 1) Su q51 

and 

ap y + i  ap 
2 Wl 2 a#l 

-- Y - l ( a + l - k ) $  - + - ( a - k + l ) S - = O  (3.8b) 

P 8 - y  = #lk(Y-l)/U-k+l V 2 ( 4 ; / ( ~ - k + l ) .  ( 3 . 8 ~ )  

The shock relations suggest that as we have expanded V(r )  in the form (3.1) we must 
expand P as 

(3.9) P = pO(41)  + 2 b n & ( 9 1 ) r l n ,  
n= 1 

with corresponding expansions for u and S. These are the inner expansions. If we 
substitute (3.9) and (3.1) into (3.8) we find that the zeroth-order terms satisfy 

Y + l  
Y - 1  

(a - k) So Uo - (a  - k + 1) $l(So U0)' + - (a-  k + 1)  St U ;  = 0, (3.100) 

(a  - k + 1) so u; + k p, + 9 (a + 1 - k) q51P; + Y + 1  2 (a - k + 1 )  sop; = 0, 
2 

(3.1 Ob) 

( 3 . 1 0 ~ )  p 0 -  - a 2  0 9 1  k(y-l),'u+l-k SO Y , 

the boundary conditions on the shock being 

S(1) = 1, U(1) = a, P(1) = a. (3.1 Od) 

Before going on with the solution of the zeroth-order inner problem we make some 
brief remarks about the matching of the two expansions. The procedure has striking 
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similarities with those encountered in hypersonic small disturbance theory (e.g. 
Freeman 1965). The actual mathematical difficulties involved were highlighted by 
Ellinwood (1967) and more fully investigated by Stewartson &Thompson (1968,1970). 
Although our problem is different the underlying ideas are the same so we relegate 
the details to the appendix. 

Case 2: k = 0. It is clear from a glance at the equation (3.5b) for 112 that the term 
involving u2 vanishes when k = 0. So in this case the outer expansions take on 
a different form; essentially, in the notation of (3.4) the error terms O(l/r'+l-k'r) do 
not exist. Without going through the details of the matching, which is essentially the 
same as in case 1, we do indicate the modifications to the outer expansions. The conse- 
quent modifications to the matching procedures and the inner expansions are not 
difficult to work out (see appendix). 

The outer expansions for u and II are 

u = 1 +uz(q5)/r"+l+..., (3.1 1 a)  

(3.11 b )  II = I'I0(q5)+h(r) n1(q5)+n,(~)/r2("+l)+..., 

where h(r) has the same interpretation as in case 1. Here 

( 3.1 2 a)  

(3.12 b)  

The rest of the asymptotic solution follows as before except that, owing to the struc- 
ture of the error term i12(qi), the case Pl = - 2(a+  1 )  may be included. In  that event 
we choose h(r)  = (logr)/r"+l and choose a, such that the spurious terms which arise 
when (3.11 b )  is written in inner variables and which would otherwise cause difficulty 
may be removed. Again we must exclude pl = - (a + 1 )  and conclude that I* = 0 
(see appendix). 

Case 3: k/(a+ 1) = 1. In  this case we have a different error term in the outer expan- 
sion for II . Specifically, using (2.10) we expand 

( 3 . 1 3 ~ )  u = 1 + u2(q5)/rk(Y-1)IY + . . . , 
I'I = II,+h(r) n,+ I 1 2 ( q 5 ) / r k ( ~ - l ) / y +  ..., 

with 
(3.13 b )  

We now follow the same procedure as in case 1 except that we use the inner variable 

$, = e*/r. (3.14) 

Again we conclude that p, cannot be equal to - k(y - l)/y and that I* = 0. In addit'ion, 
for the same reason the constant a2 is chosen such that, when (3.13b) is written in 
inner variables, the term involving the finite part of the integral occurring in the expres- 
sion for TI2 vanishes (see appendix). 
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I I I 

0 I 2 3 

k 
FIGURE 1. cco for y = $. 

Case 4: 1 < k / ( a +  1) < 2y/(y+ 1) .  This case is characterized by another type of 
error in the outer expansion for II. We expand 

u = I + u2(q5)/r"+l-k'r + . . . , 
II = n, ($ )+h(r )  IIl(q5)+II,(q5)/r~U"+l)-k(~+l)'y+ ..., 

(3.15) 

where 

u + l - k  y+l no = ao, II, = a,, 112 = 

and 

(3.16) 

Because cr + I - k is now negative, the inner limit is q5 --f 0 and the outer limit is q51 -+ a. 
Again we have virtually the same matching process as in case 3. However, for 
,8, = 2(u + 1) - k(y  + l)/y, h(r) is put equal to (logr)/r~'+l)-kcr+l/r) with the appropriate 
value of a in order to get rid of a logarithmic term occurring in the inner limit of the 
outer expansion. a2 is now obtained in terms ofp* and the fmite part of the integral in 
the expression for n2 (see appendix). 

3.2.  The existence of the inner zeroth-order solution 
We now concentrate on the discussion of the solution of (3.10). If a solution exists it 
determines the zeroth-order shock speed a,, as a function of k, u and y; this is displayed 
€or y = # i n  figure I .  It is soon apparent, however, from the numerical integrations of 
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\T" *+I 

0 C 
FIUWRE 2. Integral curves for S = 1, k < ay. 

(3.10) that the existence of solutions must be called into question in certain regions of 
parameter space. We therefore look a t  the question of existence in a little more detail. 

For this purpose it is easier to cast (3.10) into a more 'physical' form. We note that 
the zeroth-order solutions for U,, Po and So are equivalent to the well-known similarity 
solutions of one-dimensional gasdynamics (see, for example, Sedov 1959, chap. IV). 
Although Sedov gives a detailed account of the solutions in a restricted region of 
k, CT parameter space, not enough information is available for the problem under 
discussion. 

Following Sedov we write 

u = 6(r/t) V(h) ,  a2 = S2(r/t)2Z(h),  (3.17), (3.18) 

where u2 = yp/p and h = is the similarity variable. Substituting into the equations 
of gasdynamics (2.1), with y = yo, we may reduce the equations to a single first-order 
equation in 2 and V ,  namely 

where 
dZ/dV = ZS(  v, Z)/( 1 - V )  &( V ,  Z), 

s = ( 2 ( V -  1/6)+ ( y  - 1) (CT+ 1) V }  (1 - V)2+ ( y -  1) V ( V -  I/&) (1 - V )  
-Z[Z(V-  l /@+(K/8)(y-  113, ( 3 . 1 9 ~ )  

& =  V(V-1/S)(1-V)+Z{(CT+l)V-K/&} 

K = 2+S(k-2)/y.  
and 

(3.19 b )  

( 3 . 1 9 ~ )  

The position of the strong shock is given by 

z = 2, = 2y(y -  l ) / ( y +  1)2, v = v, = 2/(y+ 1). (3.20) 

Equations (3.19) and (3.20), with 6 = 1, are equivalent to (3.10), and we now proceed 
to examine the existence of the solutions. 
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I 

V 
0 C 

FIQURE 3. Integral curves for S = 1, k > cry. 

With 6 = 1, h = rt-1 and hence it can be shown that the contact front is given by 

v =  1, (3.21) 

where, of course, h = 1. In  terms of the particle-path notation of (3.10) this is the 
limit + 0. 

A first step towards understanding the problem of the existence of solutions of (3.10) 
is to examine the phase plane of (3.19) with S = 1. For k < ay the situation is shown 
in figure 2. The singular point C is a complicated one of the nodal type located a t  
2, = 0, V ,  = 1, where, in the notation of (3.10), q51 = 0 or h = 1.  A is a saddle point 
locatedat2, = (1 -VJ2with'V, = k/ya.DisaaaddlepointatZ, = co,V, = k/y(a+ 1).  
The final singular point of relevance is B, a node, located at 

vB = 2/{(Y + + a(r - )>* 

If 2, < 0, then B lies in the lower half-plane and D becomes a node; the condition is 
that k > 2(a  + l ) /{a(~ - 1) + (y + l)}. The other relevant point in figure 2 is the location 
S of the strong shock, given by (3.20). The arrows in all phase-plane diagrams indicate 
the directions of increasing A. 

The zeroth-order solution of (3.10) is simply represented by the integral curve 
joining 8 to C. As k increases from zero, for fixed a, the integral curve joining B (or 
D if Z B  < 0) and A moves to the right until, at a value k = kc, S lies on it; it can be 
shown that B is always above S in this event. Clearly no integral curve passing through 
S can possibly reach C for k greater than this critical value. The situation is essentially 
the same for k 2 ay in figure 3. Here V' 2 1, with A coinciding with C at equality. 
Again, as k increases for fixed a the integral curve joining C, B and D, or C and D if 
2, < 0, moves to the right until S lies on it when k = kc. For values of k > kc no 
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I I I I I 4 
0 1 .o 2-0 3.0 4.0 5.0 

Ll 

FIGURE 4. k, us. u for y = and 5. 

integral curve can possibly join 8 and C .  So we can conclude that solutions of (3.10) 
exist only for k < k,. For a detailed derivation of the nature and location of the singular 
points we refer the interested reader to McLaughlin (1975). 

is shown in figure 4. This is 
calculated numerically by obtaining a priori bounds on k, which are refined by an 
appropriate iteration scheme. Basically, if k, and k,  are, for a particular (r, upper and 
lower bounds for k,, then we bisect the interval and form k, = $(k ,+k , ) ;  we now 
integrate with k = k, from A (or C if k > y(r) along the integral curve joining the 
singular points until Z = Z,, V = V,. If V, < V,, k, is too small and we replace k,  by k,; 
on the other hand, if V, > V,, k, is too large and we replace k, by k,. This algorithm is 
repeated until we have sufficiently fine bounds on k,. 

We now turn to the phase-plane analysis for k > k,. As we shall show in $3.3, in 
this case we need to choose 6 > 1.  Sedov (1959) does not deal with this situation so we 
must discuss this case in some detail. In  figure 5 we show a typical phase-plane diagram 
for 6 > 1; for this particular case K = (2 + S(k - 2) } / y  < (r + 1, the only difference for 
other values of K being that, for K = (r + 1, F lies on 2 = 0 but directly below G while 
for K > (r + 1 it  lies to the left of G on 2 = 0;  the essential topography is, however, the 
same. We shall explain the location S of the strong shock in a moment. 

The first observation to make is that, since dr/dt is always finite on the contact 
front, for S > 1 it is located at h = 0, which, as we shall see in $3.3, is the outer limit 
of the inner solution for 6 > 1. It turns out that the only possible point which can 

The behaviour of k, as a function of (r for y = !j and 
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represent this limit in figure 5 is F ,  located at  V' = 116, 2, = 0. The remaining relevant 
singular points are C, a t  V, = 1,2, = 0, the saddle point G ,  at 

v " - 2  - 1 6cr K 6-1 6cr -+-+l)-[&+F 1 K (6-1) + 1)2--$ i 
2, = (1 - &)2, 

and finally the node D,  at V ,  = K/6(a + l), 2, = m. Clearly the only possible way to 
get from S to F is for S to lie on the integral surve A passing through D, G,  and P. 
For each value of K there exists a 6 which makes S lie on this curve, hence 6 is now 
a function of K ,  y and cr, and may be found numerically. 

Clearly 6-t 1 as k -+ kc(y, cr) from above, but there is little hope of obtaining 8 
analytically except in one particular case. For K = 2 + S(k - 2)/y = cr + 1, the curve A 
is given by V = 116. The condition that A passes through S gives 

6 = 6* = #(y+ 1), 

which, together with K = cr + 1, implies 

k = k* = 2 ( y ( a +  1) + (7- l ) ) / (~+  1). 

For other values of k we must resort to some numerical technique for the evaluation 
of 6. Essentially the method is the same as that used to evaluate kc; for further details 
the reader is referred to McLaughlin (1975). The variation of 6 with k for y = and 
c = 0, 1 and 2 is shown in figure 6. 

Having found 6 for k > kc we now proceed to give a brief discussion of the asymptotic 
solution in this case. 

3.3 .  The asymptotic solution for k > kc 
In  a previous section we noted the non-existence of the inner solution for k > kc with 
6 = 1. The question therefore arises of how to construct the asymptotic solution in 
this regime of k, cr parameter space. The basic assumption we must re-examine is the 
behaviour of the shock for large r ,  equation (3.1). There we assumed that the shock 
tended to a constant velocity for large r ;  however, now we must explore the possibility 
that this assumption is no longer correct. Instead we write 

(3 .22 )  

We now derive the formal asymptotic solution. The assumption embodied in (3 .22 )  
for the shock velocity and the shock conditions themselves lead one to seek expansions 
of u, p and p of the following form : 

and (3 .23b)  

with a corresponding expansion for p .  These are termed the inner expansions valid in 
the limit r-tco with #1 = O(l) ,  $1 being given by (3.7). The strong shock conditions 
give 

U0(1) = p o ( l )  = 1, Ul(l) = 1, p l ( l )  = 0. (3.24) 
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Making the appropriate change of variable, we substitute (3.23) into the full 
equations (2 .7 )  and equate zeroth- and &&-order terms to zero. The zeroth-order 
equations are 

tand Po = pg q5,1k(r-lt+~l/(k-a-l). 

Going to first order in (3 .23)  we obtain 

( 3 . 2 6 ~ )  

(3.26 c )  

The expansions (3 .23)  are valid near the shock. To investigate their validity as 
q51 -+ 03, i.e. as the outer region near the contact front is approached, we examine the 
solutions of (3 .25)  and (3 .26)  in this limit. We are aided in this task by the knowledge 
that the singular point F in the Sedov phase plane is in fact the outer limit of the inner 
solution. That being so, we may write down the zeroth-order behaviour of Uo and po 
near F in terms of the Sedov similarity variable A ;  knowing h as a function of we 
may consequently find the zeroth-order behaviour of Uo and po  in terms of q51. Pro- 
ceeding from there in a more formal manner we can generate the appropriate series 
solutions for Uo($,), ~ ~ ( q 5 ~ )  and as q51+oo; these are 

uo = Aoq5pk-U-1)  { 1 + A ,  q 5 ~ ( ~ - 1 )  (v+l)/(k+-U + . . .}, (3.27 a )  

(3.273) Po = Bo q51{ 1 + B, q 5 p ( k - - l )  + . . .}, 
with a corresponding expression for Po. Here 

[Y(U + 1) (1 - 8) + 28 - k]  BJ-l 
2 s ( a  + 1) A; 

Y - 1  A ,  = , B - -  
O - E ( Y + l ) '  

Pl = min[ l , (y -1 ) (~+1) ]  

and A ,  is undetermined by the above analysis. If P1 = 1, then B, is also undetermined 
but can be found numerically if necessary, while if Pl = (y  - 1) (a  + 1) then 

- (7 + 1) (1 - E )  [Y(U + 1) (1 - 8) + 26 - k]  Bz B, = 
2 e ~ ; r i  - (7- 1) (a+ 113 
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The equations for the first-order variables are linear and inhomogeneous and the 
solution can be split up into a particular integral and a complementary function which 
will include two arbitrary constants. We may then generate appropriate series solutions 
for the first-order variables; for U, and p1 these can be written as 

u, = $y(a1+d/(k-u-1) {Ui1'($l) + Ul",($,)>, (3.28 a)  

p1 = $l-a1/(k-u-1) {&Y$l) + &2)($1)l, (3.28 b)  

whbre the leading terms in the expansions of the particular integrals Uil) and fi) are 

(3.29) UC,) = - eAoB,/al + . . . , sc,l) = BOBz + . . . , 
while for the complementary functions Ucz) and Sf2) we have 

up = - €Ao B4/a, + A A , $jll+fY-lXU+l)ll(k-u--1) + . . , , ( 3 . 3 0 ~ )  

(3 .30b)  

I n  (3.29) and (3 .30)  B, is indeterminate, B, and B, are independent arbitrary constants 
and A ,  is linearly dependent upon B,. 

It is clear from the behaviour of Uo and U, as $,-+oo that expansions (3 .23)  break 
down when $1 = O(rk-+l ) or # = O(1). Writing (3.23) in terms of the outer variable $ 
and taking the limit r -+ co we find u = O( l ) ,  p = O(r-"+l)) and p = O(r-r('+l)). Guided 
by these indications we seek outer expansions of the form 

Sc?) = Bo{B4 + B, $~1'('-~-1) + . . .>. 

u = bo(uo(#)+u*+ ...), ( 3 . 3 1 ~ )  

(3.31 b )  

with a corresponding expansion for p ;  here a and p are taken to be positive constants 
which are to be determined. 

If we substitute (3 .31)  into ( 2 . 7 ~ )  we obtain 

Y+l Y+1 1 
ROUO + (k - Q - 1 )  - RtuA + {aRoul + ( k  - r - 1) - Rgui + Roul) r. 

Y-1 Y-1 
Y+l 1 

~ ~ o R l + ( k - ~ - ~ ) - 2 R o R l ~ ~ + R l u o ) ~ + . . .  Y-1 = 0. (3 .32)  

The terms O( 1 )  give on integrating with uo( 1 )  = l /bo 

(3.33) 

Now if a < B then terms O(r-a) give 
a R o u l + ( k - a -  l ) -R~u~+Rou,  Y + 1  = 0, 

Y-1 

u, = c l u p ,  
which, using (3 .33) ,  gives 

where C, is an arbitrary constant. The boundary condition on the contact front, 
however, implies C, = 0 and hence, if a c p, u1 = 0. If on the other hand we take a > p, 
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the O(r-8) terms in (3.32) give a zero value for Rl or, if p = 1, an arbitrary non-zero 
value. The other possibility is that a = p .  In  this event (3.32) gives to first order 

(k - a - 1) Y+l - Rgui + (01 - 1) Rl ZLO + (a + 1) Rou1= 0. (3.34) 
Y-1 

If we now insert (3.31) into (2.7b) we get 

there being no term O(r-I). Clearly, for a non-zero ul, a 2 (y -  1 )  (a+ 1) .  First, if 
a: > (y -  1) (a  + 1) then terms O(r+'-l)(*+l)) give, on integration, 

where C$ is arbitrary. Second, if a = (y -  1) (a  + 1) then 

II, = C$(bouo)Y(u+l), 

(3.35) 

It will be noticed that if a = p = ( y -  1) (a + 1)  then (3.33)-(3.35) will determine the 
asymptotic expansion; unfortunately this is not a closed set of equations. Unless we 
relax the boundary condition on u1 which imposed the condition a 2 B or alternatively 
demand that a > ( y  - 1) (a  + I), the difficulty is inescapable. Taking the first alterna- 
tive would require inserting another layer between the inner layer and the contact 
front. However, if we do this it soon becomes clear that matching with the inner 
solution is impossible. We may rule out the second alternative on two counts. First, 
there must be a term O(T-CU-~)(~+~)) in the expansion for u so that it will match with 
the corresponding term in the inner solution. The second reason for rejection is that 
we cannot match the pressure expansion if a + (y  - 1) (a  + 1). So we must conclude 
that the asymptotic expansion is indeterminate in the sense that the hierarchy of 
differential equations for the coefficients does not form a closed set. 

It is important and interesting to note that this difficulty occurs in the inviscid 
theory describing the expansion of a gas into a vacuum. For that problem it was 
pointed out by Grundy ( 1 9 6 9 ~ )  that to zeroth order in a large time expansion the 
velocity is an arbitrary function of the particle-path co-ordinate; this is the so-called 
'inertia-dominated ' regime. This regime, together with its inherent arbitrary nature, 
also occurs in the problem of a steady axisymmetric jet expanding into a vacuum 
(Grundy 1968). For a further discussion of this point we refer the reader to McLaughlin 
(1975). 

Although we cannot obtain an explicit asymptotic solution to the outer problem we 
can make some progress with the matching procedure. First of all let us assume 
expansions for u,(q5) and Ro(q5) of the form 

uo(q5) = A:q5":(1+Afp:+ ...), (3.36 a) 

R,(q5) = B,*q5(1 +BT q5f + .. .}, (3.36 b )  

where zeroth- and fist-order matching with the inner solution gives 

A,*=Ao ,  B,*=B,=(y - l ) / e ( y+l ) ,  a,*= - e / (k -r - l ) ,  

AT = - eB:/a,, BT = b,(B, + B4), 
a; = B,* = -a,/(k-a- 1). 

Here A ,  is unknown. 
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We now state the important conclusions of the paper. For k < k,(y, a) in k, a, y 
parameter space we can derive a large time solution to our problem which asympto- 
tically, to zeroth order, is associated with a constant shock speed and which can be 
calculated numerically. The higher-order terms in the expansions are however indeter- 
minate (see appendix). For k > kc(y, a) we can again derive a large time solution but 
in this case the asymptotic shock velocity varies as a power of r,  namely r(8-1)/8; the 
parameter 6 = 6(k, y ,  a) can also be computed. Proceeding with the asymptotic 
analysis in this case, it  is apparent that again the solution is to a certain degree indeter- 
minate but for reasons different from and less well known than those for k < kc. 

Clearly the critical value kc is an important parameter in our problem. It separates 
parameter space into two distinct regions: one, where k < k,, in which the asymptotic 
shock velocity is constant and one, where k > k,, in which it varies as a power of 
distance. The value of k, can be computed numerically as a function of y and a. 

One of the authors (R. M.) acknowIedges the receipt of an S.R.C. Research Student- 
ship while engaged on this work. 

Appendix 
Here we give details of the higher-order analysis of the asymptotic expansions for 

k < k,. We start off by writing down the equations satisfied by Pl, U, and 8, in (3.9). 
These are 

+ ( ~ + p l + a - k U o - $ l U ;  y-1 a - k + I  S; = 0, (A la)  

Pl = P0(yS1/So + 2 $ p ( - 1 )  ) *  (A 1c) 

S1(l) = 0, U1(l) = a,, Pl(l) = 2 4 .  (A 2) 

The boundary conditions at the shock are 

Matching requires the behaviour of pi, V, and Si near q51 = 0. For the zeroth-order 
terms we have 

with a corresponding expression for So. As far as the first-order solution is concerned 
we observe that (A la-c)  are linear and that the solution for each variable consists 
of a particular integral and a complementary function which contains two arbitrary 
constants. The particular integral comes from the &l/(u-k+l) term in (A l c )  and, as 



Unsteady expansion of a gas 791 

we shall see, automatically matches with the outer solution. On the other hand one of 
the arbitrary constants will provide us with an eigenvalue problem for the exponent 
pl. Thus the behaviour of Ul and Pl near = 0 can be written as 

together with an appropriate expansion for Rl. Here u* and p”, the leading terms 
of the complementary function, are undetermined as yet, while the second terms 
are the leading ones of the particular integral. Depending on the value of p1, either 
can dominate. For certain values of pl, i.e. p1 = - n ( a  + 1 - k / y ) ,  n = 1 , 2 ,  ..., 
logarithms may occur in (A 4). 

To complete the matching we write the outer expansion (3.4) in inner variables 
using (3.6). This gives 

I*(k/y - a) (y - 1) af 1/y 

(y+  l ) f + l - k / y  (g) + * ”  5 ,  + 
and 

On matching the zeroth-order terms of P with Po [see (A 4)], we conclude that A ,  = 01, 

and the full zeroth-order problem matches automatically. In fact the zeroth-order 
inner problem reduces to (3.10 a-c) with the boundary condition (3.10 d )  a t  the shock 
and the matching condition U,(O) = 1.  This is a particularly simple eigenvalue problem 
for a,, for by a change of variable a, can be found by a single numerical integration 
which in addition gives the value of a,; this of course assumes the existence of a solution 
to (3.10), an important point which we have dealt with in 5 3.2. Looking further a t  (A 5 )  
we see that if the term O{r-(~+l--kfy)) is to match then the appropriate value of is 
u + 1 - k / y .  But this is a value for which logarithms appear in (3.6) and in that event 
more singular terms would appear in (A 5) and (A 6). The conclusion is that a successful 
match cannot be made in this case and I*  must be equated to zero; we also deduce 
that az is zero. 

We can now proceed with the matching of the O(rfl1) terms. First, matching Pl, we 
must have h(r) = rp1 and al = p*, to be determined from the eigenvalue problem. 
Clearly the lea- term in the expansion of the particular integral in (A 4) for Pl now 
matches automatically with the appropriate terms in (A 6).  Next we must have u* = 0, 
for if there were such a term in (A 5 )  it  would manifest itself in the outer expansion 
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as a term in rp1. But this cannot happen because if such a term were included in the 
outer expansion (3.4), it would simply be a constant multiple of rp1, and because of the 
boundary condition on u at + = 1, would have to be zero; hence u* = 0. This condition 
completes the eigenvalue problem for the unknown exponent ,8,; this consists of 
equations (A la-c), the boundary conditions (A 2) and the condition u* = 0. The 
determination of b, cannot be made by the asymptotic analysis and we must conclude 
that it is dependent on conditions at  finite r .  It is not difficult to see that a condition on 
the finite part of an infinite integral will arise at each successive stage of the matching 
process and so we shall have an infinite number of such conditions. 

Stewartson & Thompson (1970) made an attack on the eigenvalue problem posed by 
their problem, but there, as here, the difficulties seem extreme. For a glimpse of these 
the reader is referred to their paper. 
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